Received: April 12, 1984; accepted: June 20, 1984

FLUOROCARBON DERIVATIVES OF NITROGEN. PART 11. SYNTHESIS OF SOME 2-(TRIFLUOROMETHYL)IMIDAZO[1,2-<u>a</u>]PYRIDINES FROM TRIFLUOROACETONITRILE

RONALD ERIC BANKS * and JULIE THOMSON

Chemistry Department, The University of Manchester Institute of Science and Technology, Manchester M60 1QD (U.K.)

SUMMARY

3-(t-Butoxycarbonyl)-2-(trifluoromethyl)imidazo[1,2-a]pyridine, prepared from trifluoroacetonitrile and pyridinium t-butoxycarbonylmethylide, reacts smoothly with trifluoroacetic acid to provide 2-(trifluoromethyl)imidazo[1,2-a]pyridine-3carboxylic acid, which gives 2-(trifluoromethyl)imidazo[1,2-a]pyridine when heated. 3-Cyano-2-(trifluoromethyl)imidazo-[1,2-a]pyridine can be obtained <u>via</u> treatment of trifluoroacetonitrile with pyridinium cyanomethylide, which is sufficiently reactive to effect nucleophilic displacement of fluorine from pentafluoropyridine under mild conditions [----- pyridinium cyano(tetrafluoro-4-pyridyl)methylide].

^{*} To whom enquiries should be addressed.

INTRODUCTION

Having decided to extend our researches on reactions between fluorinated substrates and heteroaromatic <u>N</u>-oxides and -imines [1] to include work on <u>N</u>-ylides, we chose to start with pyridinium t-butoxycarbonylmethylide rather than pyridinium methylide itself because it is easier to generate and more stable [2]; also, it was argued [3], replacement of product t-butoxycarbonyl groups by hydrogen ought to be possible <u>via</u> pyrolysis, or protonolysis followed by pyrolysis. The latter approach is exemplified here.

RESULTS AND DISCUSSION

3-(t-Butoxycarbonyl)-2-(trifluoromethyl)imidazo[1,2-<u>a</u>]pyridine (1) was converted smoothly to its parent acid (2; 82%yield^{*}) <u>via</u> alkyl-oxygen cleavage (<u>A_{AL}1</u> mechanism) when treatedwith trifluoroacetic acid [<u>cf</u>. 4] at ambient temperature;evolution of carbon dioxide occurred when the acid was heatedto a temperature just above its melting point (200-201 ^oC),giving 2-(trifluoromethyl)imidazo[1,2-<u>a</u>]pyridine (3) in 95%

500

^{*} Not optimized.

yield. The overall yield of the final product (3) was therefore only 25% since the best yield of the t-butoxycarbonylcompound (1) yet achieved is but 32% [5] owing to by-product formation [5,6]. In a single reaction, the nitrile (4) corresponding to 2-(trifluoromethyl)imidazo[1,2-<u>a</u>]pyridine-3carboxylic acid (2) was obtained in 37% yield by generating pyridinium cyanomethylide (from <u>N</u>-cyanomethylpyridinium chloride and triethylamine) in the presence of an excess of trifluoroacetonitrile, but no attempt was made to hydrolyse the cyano function.

Since, like pyridinium t-butoxycarbonylmethylide [3], pyridinium cyanomethylide is sufficiently active as a nucleophile to effect nucleophilic displacement of fluorine from pentafluoropyridine under mild conditions [eventually giving the new ylide (5)], we suspect that formation of 3-cyano-2-(trifluoromethyl)imidazo[1,2-<u>a</u>]pyridine (4) proceeds <u>via</u> a stepwise rather than a concerted 1,3-dipolar cycloaddition mechanism. By contrast with the case of the pyridinium tbutoxycarbonylmethylide—trifluoroacetonitrile reaction, we have not sought to throw further light on the mechanism by identifying the by-products which accompany the desired cycloadduct (4).

2-(Trifluoromethyl)imidazo[1,2-<u>a</u>]pyridine (3) and the related carboxylic acid (2) have been mentioned in a report [7] dealing with fluorescence, u.v. and i.r. spectra of some imidazo[1,2-<u>a</u>]pyridines; all the compounds examined were said to have been prepared <u>via</u> condensation of aminopyridines with appropriately substituted acetones, but no details whatsoever were given.

EXPERIMENTAL

Spectroscopic Analyses

I.r. and mass spectra were recorded on Perkin-Elmer 298 or 720 spectrophotometers and a Kratos MS45 spectrometer (electron beam energy 70 eV), respectively. N.m.r. spectra were obtained with Perkin-Elmer R32 (¹⁹F, 84.6; ¹H, 90 MHz) and R34 (¹H at 220 MHz), and Bruker WP80 (¹³C, 20.1 MHz) instruments [references: int. Me₄Si (¹H); ext. CF_3CO_2H (¹⁹F); int. Me₄Si, CDCl₃ lock (¹³C); positive chemical shift values assigned to low-field absorptions]. For information on the analysis of ¹H n.m.r. spectra of imidazo[1,2-<u>a</u>]pyridines, see reference 8.

Starting Materials

Trifluoroacetonitrile was prepared from commercial (FluoroChem) trifluoroacetic acid by standard procedures $(CF_3CO_2H \longrightarrow CF_3CO_2Et \longrightarrow CF_3CONH_2 \longrightarrow CF_3CN$ [9]) and converted to 3-(t-butoxycarbonyl)-2-(trifluoromethyl)imidazo-[1,2-<u>a</u>]pyridine (1) <u>via</u> treatment with pyridinium t-butoxy-carbonylmethylide [5,6]. <u>N</u>-Cyanomethylpyridinium chloride, m.p. 179-180 °C (lit. [10], 178 °C), with a correct elemental composition (C,H,Cl,N), was prepared from pyridine and chloroacetonitrile [10]; and pentafluoropyridine was used as received from Bristol Organics Ltd.

Reaction of 3-(t-Butoxycarbonyl)-2-(trifluoromethyl)imidazo[1,2-a pyridine with Trifluoroacetic Acid.

A mixture of the imidazopyridine (1.43 g, 5.0 mmol) and trifluoroacetic acid (10 cm^3) was stirred at ambient temperature for 1 day (probably an excessive reaction period). Removal of

volatile material, <u>in vacuo</u>, followed by trituration of the white residue (1.73 g) with hot acetonitrile provided crystalline 2-(trifluoromethyl)imidazo[1,2-<u>a</u>]pyridine-3-carboxylic acid (2) (0.95 g, 4.1 mmol, 82%) (Found: C, 47.0; H, 2.0; F, 24.5; N, 12.4. Calc. for $C_{9}H_{5}F_{3}N_{2}O_{2}$: C, 46.95; H, 2.2; F, 24.8; N, 12.2%), m.p. 200-201 ^oC, λ_{max} . (mull) 2850 (vbr., 0-H str.), 1710 (C=0 str.) cm⁻¹, δ_{F} [20% soln. in (CD₃)₂SO] 18.5 (s) p.p.m., δ_{H} (same soln.) 7.38 (td, 6-H), 7.71 (ddd, 7-H), 7.93 (ddd, 8-H), 9.39 (dt, 5-H) p.p.m. (J_{78} 9.2, $J_{56} \approx J_{67} \approx$ 7, $J_{68} \approx J_{57} \approx 1.5$, $J_{58} \approx 1$ Hz), $\underline{m}/\underline{z}$ 230 (\underline{M}^{+*} , 100%), 213 (\underline{M} -OH , 69%), 186 (\underline{M} -CO₂, 51%), 185(\underline{M} -CO₂H, 19%).

Decarboxylation of 2-(Trifluoromethyl)imidazo[1,2-a]pyridine-3-carboxylic Acid

The acid (0.92 g, 4.0 mmol) was heated slowly to <u>ca</u>. 20 °C (oil bath) in a flask (50 cm³) fitted with a water-cooled condenser and silica-gel guard tube. The sample melted and evolved bubbles of a gas for a few minutes, leaving a slightly charred white residue that was sublimed <u>in vacuo</u> (bath temp. 60-70 °C) to provide fine white crystals of 2-(trifluoromethyl)-imidazo[1,2-<u>a</u>]pyridine(3)(0.70 g, 3.8 mmol, 95%) (Found: C, 51.8; H, 2.5; F, 31.0; N, 15.3. Calc. for $C_8H_5F_3N_2$: C, 51.6; H, 2.7; F, 30.6; N, 15.05%), m.p. 91-92 °C, δ_F (20% soln. in CDCl₃) 15.6 (s) p.p.m., δ_H (same soln.) 6.91 (td, 6-H), 7.30 (ddd, 7-H), 7.65 (br.dt, 8-H), 7.92 (br.d, 3-H), 8.18 (dt, 5-H) p.p.m. (\underline{J}_{78} 9.2, $\underline{J}_{56} \approx \underline{J}_{67} \approx 7$, $\underline{J}_{58} \approx \underline{J}_{57} \approx \underline{J}_{35} \approx 1.5$, $\underline{J}_{68} \approx 1$ Hz), δ_C (30% soln. in CDCl₃) 111.4 (q, ³ \underline{J}_{CF} 3.7 Hz; C-3), 113.7 (s; C-6 or -8), 118.1 (s; C-8 or -6), 121.6 (q, ¹ \underline{J}_{CF} 269 Hz; CF₃),

126.3 (s; C-7), 126.4 (s; C-5), 135.5 (q, ${}^{2}J_{CF}$ 38 Hz; C-2), 145.2 (s; C-8<u>a</u>) p.p.m., <u>m/z</u> 186 (<u>M</u>⁺, 100%), 167 (<u>M</u>-F, 29%), 78 (C₅H₄N⁺, 9%).

Reactions of Pyridinium Cyanomethylide

(a) With trifluoroacetonitrile

Triethylamine (1.01 g, 10 mmol) and then trifluoroacetonitrile (1.9 g, 20 mmol) were condensed into a cold (-196 °C), evacuated Pyrex Rotaflo tube (300 cm³) containing a degassed suspension of N-cyanomethylpyridinium chloride (1.55 g, 10 mmol) in dry acetonitrile (50 cm^3) and a PTFEcoated magnetic stirrer follower. The tube was sealed, allowed to warm to room temperature (a bright yellow solution containing solid material formed) then stored for 2 days with the stirrer in motion. Gaseous material was removed from the tube and found by i.r. spectroscopy to be unreacted trifluoroacetonitrile (7.0 mmol); filtration of the liquid product to remove triethylammonium chloride (0.34 g, 2.5 mmol) followed by evaporation of the filtrate to remove acetonitrile provided an orange-red solid (3.21 g), shown by t.l.c. analysis to comprise at least four components and residual material. More triethylammonium chloride (0.87 g, 6.3 mmol, total yield 88%) was recovered when the solid product was dissolved in acetone for absorption on silica prior to work-up by dry column 'flash' chromatography [4.0 x 50 mm silica; CH₂Cl₂ light petroleum (b.p. 40-60 ^OC)]; this technique provided 3-cyano-2-(trifluoromethyl)imidazo[1,2-a]pyridine (4;nc) [0.79 g (after a final recrystallization from petroleum ether, b.p. 80-100 $^{\rm O}C),$ 3.7 mmol, 37% based on N-cyanomethylpyridinium chloride] (Found: C, 51.4; H, 1.6; N, 20.2. $C_{Q}H_{4}F_{3}N_{3}$ requires C, 51.2; H, 1.9; N, 19.9%), m.p. 101-102 ^oC, λ_{max} (mull) 2214 (C=N str.) cm⁻¹, δ_{F} (20% soln. in CDCl₃) 15.4 (s) p.p.m., δ_{H} (same soln.) 7.35 (td; 6-H), 7.69 (ddd; 7-H), 7.91 (dt; 8-H), 8.48 (dt; 5-H) p.p.m. (\underline{J}_{78} 9.2, $\underline{J}_{56} \approx \underline{J}_{67} \approx 7$, all other couplings <u>ca</u>. 1 Hz), δ_{C} (30% soln. in CDCl₃) 94.6 (s; C-3), 108.2 (s; CN), 116.5 (s; C-6 or -8), 118.9 (s; C-8 or -6), 119.7 (q; CF₃), 125.8 (s; C-7), 130.1 (s; C-5), 142.0 (q; C-2), 146.0 (s; C-8<u>a</u>) p.p.m. ($^{1}\underline{J}_{CF}$ 270.6, $^{2}\underline{J}_{CF}$ 39.0 Hz), <u>m/z</u> 211 (<u>M</u>⁺⁺, 100%), 192 (<u>M</u>-F, 22%), 78 (C₅H₄N⁺, 13%).

(b) <u>With pentafluoropyridine</u>

Triethylamine (1.0 g, 10 mmol) and then pentafluoropyridine (1.69 g, 10 mmol) were condensed, in vacuo, into a cold (-196 $^{\circ}$ C) Pyrex tube (300 cm^3) containing a magnetic stirrer follower and a frozen, de-gassed suspension of N-cyanomethylpyridinium chloride (1.55 g, 10 mmol) in dry acetonitrile (35 cm³). The tube was sealed (PTFE-glass Rotaflo valve) and allowed to warm to room temperature; as it did so, the reaction mixture turned yellow, then orange, and finally bright red. After the reaction mixture (now containing a white precipitate) had been stirred for 2 days, the tube was opened and the product was filtered to remove triethylammonium chloride (0.23 g, 1.7 mmol; identified by i.r. spectroscopy and m.p. determination). Addition of water to the filtrate caused the precipitation of orange pyridinium cyano(2,3,5,6-tetrafluoro-4-pyridyl)methylide (5; nc) (2.01 g, 7.5 mmol, 75%) (Found: C, 53.9; H, 1.6; F, 28.6; N, 15.6. C₁₂H₅F₄N₃ requires C, 53.9; H, 1.9; F, 28.5; N, 15.7%), m.p. 171-172 ^OC (decomp.), λ_{max} . (mull) 2153 (C=N str.) cm⁻¹, $\delta_{\rm F}$ [10% soln. in (CD₃)₂CO] -20.7 (m; 2-,6-F), -71.4

(m; 3-,5-F) p.p.m., $\delta_{\rm H}$ (same soln.) 8.03 (t; 3-,5-H), 8.28 (t; 4-H), 8.87 (d; 2-,6-H) p.p.m., $\underline{m}/\underline{z}$ 267 (\underline{M}^{+} , 100%), 248 (\underline{M} -F, 12%), 79 ($C_5H_5N^+$ 6%).

ACKNOWLEDGEMENTS

We are indebted to the SERC for the award of a Studentship (to J.T.), and to David M. Rackham (Lilly Research Centre Ltd., Surrey, U.K.) for a copy of the 60 MHz ¹H n.m.r. spectrum of 2-(trifluoromethyl)imidazo[1,2-<u>a</u>]pyridine (3), which corresponded well with the spectrum of the material synthesised by the method described here.

REFERENCES

- R.E. Banks and S.M. Hitchen, J.C.S. Perkin Trans. I, (1982)
 1593, and references cited there.
- 2 J.B. Bapat, J. Epsztajn, A.R. Katritzky, and B. Plau, J.C.S. Perkin Trans. I, (1977) 1692.
- 3 R.E. Banks, S.M. Hitchen, and J. Thomson, J. Fluorine Chem. <u>20</u> (1982) 127.
- 4 R. Schwyzer and H. Kappeler, Helv. Chim. Acta, <u>44</u> (1961) 1991.
- 5 J. Thomson, Ph.D. Thesis, University of Manchester, 1983.
- 6 R.E. Banks and J. Thomson, J. Fluorine Chem., <u>22</u> (1983) 589.
- 7 D.M., Rackham, Appl. Spec., <u>33</u> (1979) 561.
- J.P. Paolini and R.K. Robins, J. Heterocyclic Chem., <u>2</u>
 (1965) 53; W.W. Paudler and H.L. Blewitt, Tetrahedron, <u>21</u>
 (1965) 353.
- 9 H. Gilman and R.G. Jones, J. Amer. Chem. Soc., <u>65</u> (1943) 1459.
 10 A.H. Cook, J. Downer, and B. Hornung, J. Chem. Soc., (1941) 502