Received: April 12, 1984; accepted: June 20, 1984

FLUOROCARBON DERIVATIVES OF NITROGEN. PART 11. SYNTHESIS OF SOME 2-(TRIFLUOROMETHYL)IMIDAZO[1,2-a]PYRIDINES FROM TRIFLUOROACETONITRILE

RONALD ERIC BANKS* and JULIE THOMSON

Chemistry Department, The University of Manchester Institute of Science and Technology, Manchester M60 IQD (U.K.)

SUMMARY

3-(t-Butoxycarbonyl)-2-(trifluoromethyl)imidazo[1,2-a] pyridine, prepared from trifluoroacetonitrile and pyridinium t-butoxycarbonylmethylide, reacts smoothly with trifluoroacetic acid to provide 2-(trifluoromethyl)imidazo $[1,2-a]$ pyridine-3carboxylic acid, which gives 2-(trifluoromethyl)imidazo[1,2-a]pyridine when heated. 3-Cyano-2-(trifluoromethyl)imidazo- [1,2-a]pyridine can be obtained via treatment of trifluoroacetonitrile with pyridinium cysnomethylide, which is sufficiently reactive to effect nucleophilic displacement of fluorine from pentafluoropyridine under mild conditions [- pyridinium cyano(tetrafluoro-4-pyridyl)methylide].

^{*} To whom enquiries should be addressed.

INTRODUCTION

Having decided to extend our researches on reactions between fluorinated substrates and heteroaromatic N-oxides and -imines $[1]$ to include work on N-ylides, we chose to start with pyridinium t-butoxycarbonylmethylide rather than pyridinium methylide itself because it is easier to generate and more stable [2]; also, it was argued [3], replacement of product t-butoxycarbonyl groups by hydrogen ought to be possible via pyrolysis, or protonolysis followed by pyrolysis. The latter approach is exemplified here.

RESULTS AND DISCUSSION

3-(t-Butoxycarbonyl)-2-(trifluoromethyl)imidazo[1,2-a] pyridine (1) was converted smoothly to its parent acid (2; 82% yield*) <u>via</u> alkyl-oxygen cleavage $(A_{AL}1$ mechanism) when treated with trifluoroacetic acid $[cf. 4]$ at ambient temperature; evolution of carbon dioxide occurred when the acid was heated to a temperature just above its melting point (200-201 $^{\circ}$ C), giving 2-(trifluoromethyl)imidazo[1,2-a]pyridine (3) in 95%

500

Not optimized.

yield. The overall yield of the final product (3) was therefore only 25% since the best yield of the t-butoxycarbonylcompound (1) yet achieved is but 32% [5] owing to by-product formation $[5,6]$. In a single reaction, the nitrile (4) corresponding to 2-(trifluoromethyl)imidazo $\lceil 1, 2-a \rceil$ pyridine-3carboxylic acid (2) was obtained in 37% yield by generating pyridinium cyanomethylide (from N-cyanomethylpyridinium chloride and triethylamine) in the presence of an excess of trifluoroacetonitrile, but no attempt was made to hydrolyse the cyan0 function.

Since, like pyridinium t-butoxycarbonylmethylide [3], pyridinium cyanomethylide is sufficiently active as a nucleophile to effect nucleophilic displacement of fluorine from pentafluoropyridine under mild conditions [eventually giving the new ylide (5)], we suspect that formation of 3-cyano-2- $(trifluorometry1)$ imidazo $[1,2-a]$ pyridine (4) proceeds via a stepwise rather than a concerted 1,3-dipolar cycloaddition mechanism. By contrast with the case of the pyridinium tbutoxycarbonylmethylide-trifluoroacetonitrile reaction, we have not sought to throw further light on the mechanism by identifying the by-products which accompany the desired cycloadduct (4).

 $2-(Trifluorometry1)$ imidazo $[1,2-a]$ pyridine (3) and the related carboxylic acid (2) have been mentioned in a report $[7]$ dealing with fluorescence, u.v. and i.r. spectra of some $imidazo[1,2-a]$ pyridines; all the compounds examined were said to have been prepared via condensation of aminopyridines with appropriately substituted acetones, but no details whatsoever were given.

EXPERIMENTAL

Spectroscopic Analyses

1.r. and mass spectra were recorded on Perkin-Elmer 298 or 720 spectrophotometers and a Kratos MS45 spectrometer (electron beam energy 70 eV), respectively. N.m.r. spectra were obtained with Perkin-Elmer R32 (19 F, 84.6; 1 H, 90 MHz) and R34 (1 H at 220 MHz), and Bruker WP80 $(^{13}C, 20.1$ MHz) instruments [references: int. $Me_{4}Si$ (¹H); ext. $CF_{7}CO_{2}H$ (¹⁹F); int. $Me_{4}Si$, CDC1₃ lock (¹³C); positive chemical shift values assigned to low-field absorptions]. For information on the analysis of 1_H n.m.r. spectra of imidazo[1,2-a]pyridines, see reference 8.

Starting Materials

Trifluoroacetonitrile was prepared from commercial (FluoroChem) trifluoroacetic acid by standard procedures $(\text{CF}_{3}CO_{2}H \longrightarrow \text{CF}_{3}CO_{2}Et \longrightarrow \text{CF}_{3}COMH_{2} \longrightarrow \text{CF}_{3}CN [9])$ and converted to 3-(t-butoxycarbonyl)-2-(trifluoromethyl)imidazo- [1,2-a]pyridine (1) via treatment with pyridinium t-butoxycarbonylmethylide $[5,6]$. N-Cyanomethylpyridinium chloride, m.p. 179-180 $^{\circ}$ C (lit. [10], 178 $^{\circ}$ C), with a correct elemental composition (C,H,Cl,N), was prepared from pyridine and chloroacetonitrile [IO]; and pentafluoropyridine was used as received from Bristol Organics Ltd.

Reaction of 3-(t-Butoxycarbonyl)-2-(trifluoromethyl)imidazo [1,2-a pyridine with Trifluoroacetic Acid.

A mixture of the imidazopyridine $(1.43 \text{ g}, 5.0 \text{ mmol})$ and trifluoroacetic acid (10 cm^3) was stirred at ambient temperature for 1 day (probably an excessive reaction period). Removal of

volatile material, in vacua, followed by trituration of the white residue **(1.73 g)** with hot acetonitrile provided crystalline 2-(trifluoromethyl)imidazo[1,2-a]pyridine-3-carboxylic acid (2) (0.95 g, **4.1** mmol, 82%) (Found: C, 47.0; H, 2.0; F, 24.5; N, 12.4. Calc. for $C_0H_5F_7N_2O_2$: C, 46.95; H, 2.2; F, 24.8; N, 12.2%), m.p. 200-201 $^{\circ}$ C, λ_{max} (mull) 2850 (vbr., 0-H str.), 1710 (C=0 str.) cm ', $\delta_{_{\rm F}}$ [20% soln. in (CD₃)₂SO] 18.5 (s) p.p.m., $\delta_{\rm H}$ (same soln.) 7.38 (td, 6-H), 7.71 (ddd, 7-H), 7.93 (ddd, 8-H), 9.39 (dt, 5-H) p.p.m. (<u>J₇₈</u> 9.2, <u>J₅₆~J₆₇~ 7, J₆₈.</u> $\underline{J}_{57} \approx 1.5$, $\underline{J}_{58} \approx 1$ Hz), $\underline{m}/\underline{z}$ 230 (\underline{M}^{+} , 100%), 213 (\underline{M} -OH, 69%), 186 (M-CO₂, 51%), 185(M-CO₂H, 19%).

Decarboxylation of 2-(Trifluoromethyl)imidazo[1,2-a]pyridine-3-carboxylic Acid

The acid (0.92 g, 4.0 mmol) was heated slowly to $ca. 20 °C$ (oil bath) in a flask (50 cm^3) fitted with a water-cooled condenser and silica-gel guard tube. The sample melted and evolved bubbles of a gas for a few minutes, leaving a slightly charred white residue that was sublimed in vacuo (bath temp. 60-70 $^{\circ}$ C) to provide fine white crystals of 2-(trifluoromethyl) $imidazo[1,2-a]pyridine(3)(0.70 g, 3.8 mmol, 95%) (Found:$ C, 51.8; H, 2.5; F, 31.0; N, 15.3. Calc. for $C_8H_5F_3N_2: C$, 51.6; H, 2.7; F, 30.6; N, 15.05%), m.p. 91-92 ^oC, $\delta_{\rm F}$ (20% soln. in CDCl₃) 15.6 (s) p.p.m., δ_H (same soln.) 6.91 (td, 6-H), 7.30 (ddd, 7-H), 7.65 (br.dt, 8-H), 7.92 (br.d, 3-H), 8.18 (dt, 5-H) $p.p.m.$ (J_{78} 9.2, $J_{56} \approx J_{67} \approx 7$, $J_{58} \approx J_{57} \approx J_{58} \approx 1.5$, $J_{68} \approx 1$ Hz), $\delta_{\texttt{C}}$ (30% soln. in CDCl₃) 111.4 (q, ³J_{CF} 3.7 Hz; C-3), 113.7 (s; c-6 or -8), 118.1 (s; c-8 or -6), 121.6 (q, '<u>J_{CF} 269 Hz; CF₃),</u>

126.3 (s; C-7), 126.4 (s; C-5), 135.5 (q, ²J_{CE} 38 Hz; C-2), 145.2 (s; C-82) p.p.m., g/z **186 (!J! +', loo%), 167** (M-F, 29%), 78 $(C_5H_4N^+$, 9%).

Reactions of Pyridinium Cyanomethylide

(a) With trifluoroacetonitrile

Triethylamine (1.01 g, 10 mmol) and then trifluoroacetonitrile (1.9 g, 20 mmol) were condensed into a cold (-196 °C) , evacuated Pyrex Rotaflo tube (300 cm³) containing a degassed suspension of N-cyanomethylpyridinium chloride (1.55 g, 10 mmol) in dry acetonitrile (50 cm³) and a PTFEcoated magnetic stirrer follower. The tube was sealed, allowed to warm to room temperature (a bright yellow solution containing solid material formed) then stored for 2 days with the stirrer in motion. Gaseous material was removed from the tube and found by i.r. spectroscopy to be unreacted trifluoroacetonitrile (7.0 mmol); filtration of the liquid product to remove triethylammonium chloride (0.34 g, **2.5** mmol) followed by evaporation of the filtrate to remove acetonitrile provided an orange-red solid (3.21 g) , shown by t.l.c. analysis to comprise at least four components and residual material. More triethylammonium chloride (0.87 g, 6.3 mmol, total yield 88%) was recovered when the solid product was dissolved in acetone for absorption on silica prior to work-up by dry column 'flash' chromatography [4.0 x 50 mm silica; CH_2Cl_2 light petroleum (b.p. 40-60 $^{\circ}$ C)]; this technique provided 3 -cyano-2-(trifluoromethyl)imidazo $[1,2-a]$ pyridine $(4$;nc) $[0.79 \text{ g}$ (after a final recrystallization from petroleum ether, b.p. 80-100 $^{\circ}$ C), 3.7 mmol, 37% based on N-cyanomethylpyridinium chloride] (Found: C, 51.4; H, 1.6; N, 20.2. $C_9H_4F_7N_7$ requires C, 51.2; H, 1.9; N, 19.9%), m.p. 101-102 ^oC, λ_{max} (mull) 2214 (CEN str.) cm⁻¹, δ_F (20% soln. in CDC1₃) 15.4 (s) p.p.m., δ_H **(same** soln.) 7.35 (td; 6-H), 7.69 (ddd; 7-H), 7.91 (dt; 8-H), 8.48 (dt; 5–H) p.p.m. (<u>J₇₈</u> 9.2, J₅₆≈J₆₇≈7, all other couplings <u>ca</u>. 1 Hz), δ_{C} (30% soln. in CDCl₃) 94.6 (s; C-3), 108.2 (s; CN), 116.5 (s; C-6 or -8), 118.9 (s; C-8 or -6), 119.7 (q; CF₃), 125.8 (s; c-7), 130.1 (s; C-5), 142.0 (q; C-2), 146.0 (s; C-82) p.p.m. $({}^{1}L_{CF}$ 270.6, ${}^{2}L_{CF}$ 39.0 Hz), m/z 211 (M^{+} , 100%), 192 $(M-F, 22%)$, 78 $(C_EH_AN^+$, 13%).

(b) With pentafluoropyridine

Triethylamine (1.0 g, IO mmol) and then pentafluoropyridine (1.69 g, 10 mmol) were condensed, in vacuo, into a cold (-196 °C) Pyrex tube (300 cm^3) containing a magnetic stirrer follower and a frozen, de-gassed suspension of N-cyanomethylpyridinium chloride (1.55 g, 10 mmol) in dry acetonitrile (35 $cm³$). The tube was sealed (PTFE-glass Rotaflo valve) and allowed to warm to room temperature; as it did so, the reaction mixture turned yellow, then orange, and finally bright red. After the reaction mixture (now containing a white precipitate) had been stirred for 2 days, the tube was opened and the product was filtered to remove triethylammonium chloride (0.23 g, 1.7 mmol; identified by i.r. spectroscopy and m.p. determination). Addition of water to the filtrate caused the precipitation of orange pyridinium cyano(2,3,5,6-tetrafluoro-4-pyridyl)methylide (5; nc) (2.01 g, 7.5 mmol, 75%) (Found: C, 53.9; H, 1.6; F, 28.6; N, 15.6. $C_{12}H_5F_4N_5$ requires C, 53.9; H, 1.9; F, 28.5; N, 15.7%), m.p. 171–172 °C (decomp.), $\lambda_{\max.}^{}$ (mull) 2153 (C≡N $\phantom{\lambda_{\max.}^{}}$ str.) cm⁻¹, $\delta_{_{\rm F}}$ [10% soln. in (CD₃)₂CO] -20.7 (m; 2-,6-F), -71.4

(m; $3-, 5-F$) p.p.m., δ_{H} (same soln.) 8.03 (t; 3-,5-H), 8.28 (t; 4-H), 8.87 (d; 2-,6-H) p.p.m., m/z 267 $(M^+$, 100%), 248 $(\underline{M}-F, 12%)$, 79 $(C_{5}H_{5}N^{+} 6%)$.

ACKNOWLEDGEMENTS

We are indebted to the SERC for the award of a Studentship (to J.T.), and to David M. Rackham (Lilly Research Centre Ltd., Surrey, U.K.) for a copy of the 60 MHz 1_H n.m.r. spectrum of $2-(\text{trifluoromethyl})$ imidazo $[1,2-a]$ pyridine (3) , which corresponded well with the spectrum of the material synthesised by the method described here.

REFERENCES

- **1** R.E. Banks and S.M. Hitchen, J.C.S. Perkin Trans. I, (1982) 1593, and references cited there.
- 2 J.B. Bapat, J. Epsztajn, A.R. Katritzky, and B. Plau, J.C.S. Perkin Trans. I, (1977) 1692.
- **3** R-E, Banks, S.M. Hitchen, and J. Thomson, J. Fluorine Chem. 20 (1982) 127.
- 4 R. Schwyzer and H. Kappeler, Helv. Chim. Acta, 44 (1961) 1991.
- **5** J. Thomson, Ph.D. Thesis, University of Manchester, 1983.
- 6 R.E. Banks and J. Thomson, J. Fluorine Chem., 22 (1983) 589.
- **7** D.M, Rackham, Appl. Spec., **,3J (1979)** 561.
- 8 J.P. Paolini and R.K. Robins, J. Heterocyclic Chem., 2 (1965) 53; W.W. Paudler and H.L. Blewitt, Tetrahedron, 21 **(1965) 353.**
- 9 H. Gilman and R.G. Jones, J. Amer. Chem. Soc., 65 (1943) 1459. IO A.H. Cook, J. Downer, and B. Hornung, J. Chem. Sot **., (1941) 502**