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SUMMARY 

3-(t-Butoxycarbonyl)-2-(trifluoromethyl)imidazo[1,2-a]- 

pyridine, prepared from trifluoroacetonitrile and pyridinium 

t-butoxycarbonylmethylide, reacts smoothly with trifluoroacetic 

acid to provide 2-(trifluoromethyl)imidazo[l,2-a]pyridine-3- 

carboxylic acid, which gives 2-(trifluoromethyl)imidazo[l,2-a]- 

pyridine when heated. 3-Cyano-2-(trifluoromethyl)imidazo- 

[1,2-a]pyridine can be obtained via treatment of trifluoro- 

acetonitrile with pyridinium cysnomethylide, which is 

sufficiently reactive to effect nucleophilic displacement of 

fluorine from pentafluoropyridine under mild conditions 

[dpyridinium cyano(tetrafluoro-&pyridyl)methylide]. 
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INTRODUCTION 

Having decided to extend our researches on reactions 

between fluorinated substrates and heteroaromatic N-oxides 

and -imines [I] to include work on FJ-ylides, we chose to start 

with pyridinium t-butoxycarbonylmethylide rather than pyridiniur 

methylide itself because it is easier to generate and more 

stable [2]; also, it was argued [3], replacement of product 

t-butoxycarbonyl groups by hydrogen ought to be possible via 

pyrolysis, or protonolysis followed by pyrolysis. The latter 

approach is exemplified here. 

RESULTS AND DISCUSSION 

c-l I 
\ 

'N 

:i 
X CF3 

(1) X = C02But (3) X = H (5) 

(2) X = C02H (4) X = CN 

3-(t-Butoxycarbonyl)-2-(trifluoromethyl)imidazo[1,2-a]- 

pyridine (1) was converted smoothly to its parent acid (2; 82% 

yield*) via alkyl-oxygen cleavage (Q$ mechanism) when treated 

with trifluoroacetic acid [c-f. 41 at ambient temperature; 

evolution of carbon dioxide occurred when the acid was heated 

to a temperature just above its melting point (200-201 "C), 

giving 2-(trifluoromethyl)imidazo[l,2-a]pyridine (3) in 95% 

* Not optimized. 
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yield. The overall yield of the final product (3) was there- 

fore only 25% since the best yield of the t-butoxycarbonyl- 

compound (1) yet achieved is but 32% [5] owing to by-product 

formation [5,6]. In a single reaction, the nitrile (4) 

corresponding to 2-(trifluoromethyl)imidazo[l,2-a]pyridine-3- 

carboxylic acid (2) was obtained in 37% yield by generating 

pyridinium cyanomethylide (from N-cyanomethylpyridinium chloride 

and triethylamine) in the presence of an excess of trifluoro- 

acetonitrile, but no attempt was made to hydrolyse the cyan0 

function. 

Since, like pyridinium t-butoxycarbonylmethylide [3], 

pyridinium cyanomethylide is sufficiently active as a nucleo- 

phile to effect nucleophilic displacement of fluorine from 

pentafluoropyridine under mild conditions [eventually giving 

the new ylide (5)], we suspect that formation of 3-cyano-2- 

(trifluoromethyl)imidazo[l,2-a]pyridine (4) proceeds via a 

stepwise rather than a concerted 1,3-dipolar cycloaddition 

mechanism. By contrast with the case of the pyridinium t- 

butoxycarbonylmethylide-trifluoroacetonitrile reaction, we 

have not sought to throw further light on the mechanism by 

identifying the by-products which accompany the desired 

cycloadduct (4). 

2-(Trifluoromethyl)imidazo[l,2-a]pyridine (3) and the 

related carboxylic acid (2) have been mentioned in a report 

[7] dealing with fluorescence, U.V. and i.r. spectra of some 

imidazo[l,2-alpyridines; all the compounds examined were said 

to have been prepared via condensation of aminopyridines with 

appropriately substituted acetones, but no details whatsoever 

were given. 
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EXPERIMENTAL 

Spectroscopic Analyses 

1.r. and mass spectra were recorded on Perkin-Elmer 298 or 

720 spectrophotometers and a Kratos MS45 spectrometer (electron 

beam energy 70 eV), respectively. N.m.r. spectra were obtained 

with Perkin-Elmer R32 ("F, 84.6; 'H, 90 MHz) and R34 ('H at 

220 MHz), and Bruker WP80 (13C, 20.1 MHz) instruments 

[references: int. Me4Si ('H); ext. CF CO H ("F); int. Me4Si, 
3 2 

CDC13 lock ("C); positive chemical shift values assigned to 

low-field absorptions]. For information on the analysis of 

1 
H n.m.r. spectra of imidazo[l,Z-alpyridines, see reference 8. 

Starting Materials 

Trifluoroacetonitrile was prepared from commercial 

(FluoroChem) trifluoroacetic acid by standard procedures 

(CF3C02K _j) CF3C02Et + CF3CONH2 __t CF3CN [9]) and 

converted to 3-(t-butoxycarbonyl)-2-(trifluoromethyl)imidazo- 

[1,2-a]pyridine (1) via treatment with pyridinium t-butoxy- 

carbonylmethylide [5,6]. N-Cyanomethylpyridinium chloride, 

m.p. 179-180 'C (lit. [IO], 178 'C), with a correct elemental 

composition (C,H,Cl,N), was prepared from pyridine and 

chloroacetonitrile [IO]; and pentafluoropyridine was used as 

received from Bristol Organics Ltd. 

Reaction of 3-(t-Butoxycarbonyl)-2-(trifluoromethyl)imidazo~,2-a 

pyridine with Trifluoroacetic Acid. 

A mixture of the imidazopyridine (1.43 g, 5.0 mmol) and 

trifluoroacetic acid (IO cm3) was stirred at ambient temperature 

for 1 day (probably an excessive reaction period). Removal of 
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volatile material, in vacua, followed by trituration of the 

white residue (1.73 g) with hot acetonitrile provided crystalline 

2-(trifluoromethyl)imidazo[l,2-a]pyridine-3-carboxylic acid (2 ) 

(0.95 g, 4.1 mmol, 82%) (Found: C, 47.0; H, 2.0; F, 24.5; N, 

12.4. Calc. for C9H5F3N202: C, 46.95; H, 2.2; F, 24.8; N, 

12.2%), m.p. 200-201 'C, h,, (mull) 2850 (vbr., O-H str.), 

1710 (C=O str.) 

p,p.m., hH (same 

(ddd, S-H), 9.39 

cm -I, oF [20% soln. in (CD3)2SO] 18.5 (s) 

soln.) 7.38 (td, 6-H), 7.71 (ddd, 7-H), 7.93 

(dt, 5-H) p.p.m. (J78 9.2, J56~J67~ 7, G8* 

Hz), m/z 230 -- (M+', lOO%), 213 (M-OH , 6g%), 

186 @I-co2, 51%), 185(I$C02H, 19%). 

Decarboxvlation of 2-(Trifluoromethvl)imidazorl,2-alpyridine- 

3-carboxylic Acid 

The acid (0.92 g, 4.0 mmol) was heated slowly to ~a. 20 'C 

(oil bath) in a flask (50 cm3) fitted with a water-cooled 

condenser and silica-gel guard tube. The sample melted and 

evolved bubbles of a gas for a few minutes, leaving a slightly 

charred white residue that was sublimed in vacua (bath temp. _- 

60-70 'C) to provide fine white crystals of 2-(trifluoromethyl)- 

imidazo[l,2-a]pyridine( 3)(0.70 g, 3.8 mmol, 95%) (Found: 

C, 51.8; H, 2.5; F, 31.0; N, 15.3. Calc. for C8H5F3N2 : C, 

51.6; H, 2.7; F, 30.6; N, 15.05%), m.p. 91-92 'C, SF (20% soln. 

in CDCl,) 15.6 (s) p.p.m., oH (same soln.) 6.91 (td, 6-H), 7.30 

(ddd, 7!H), 7 

p.P.m. (L78 9 

6 C (30% soln. 

c-6 or -8)) 1 

65 (br.dt, 8-H), 7.92 (br.d, 3-H), 8.18 (dt, 5-H) 

2,256&67W7, 558~'57= g35*1.5, &8-l Hz), 

in CDC13) 111.4 (q, '&F 3.7 Hz; C-3), 113.7 (s; 

8.1 (s; C-8 or -6), 121.6 (q, 'GF 269 Hz; CF3), 
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126.3 (s; C-7), 126.4 (s; C-5), 135.5 (q, 2QF 38 Hz; C-2), 

145.2 (s; C-82) p.p.m., g/z 186 (!J! +', loo%), 167 (M-F, 29%), 

78 (C5H4N+, 9%). 

Reactions of Pyridinium Cyanomethylide 

(2) With trifluoroacetonitrile 

Triethylamine (1.01 g, 10 mmol) and then trifluoro- 

acetonitrile (1.9 g, 20 mmol) were condensed into a cold 

(-196 'c), evacuated Pyrex Rotaflo tube (300 cm3) containing 

a degassed suspension of N-cyanomethylpyridinium chloride 

(1.55 g, 10 mmol) in dry acetonitrile (50 cm3) and a PTFE- 

coated magnetic stirrer follower. The tube was sealed, 

allowed to warm to room temperature (a bright yellow solution 

containing solid material formed) then stored for 2 days with 

the stirrer in motion. Gaseous material was removed from the 

tube and found by i.r. spectroscopy to be unreacted trifluoro- 

acetonitrile (7.0 mmol); filtration of the liquid product to 

remove triethylammonium chloride (0.34 g, 2.5 mmol) followed 

by evaporation of the filtrate to remove acetonitrile provided 

an orange-red solid (3.21 g), shown by t.1.c. analysis to 

comprise at least four components and residual material. 

More triethylammonium chloride (0.87 g, 6.3 mmol, total yield 

88%) was recovered when the solid product was dissolved in 

acetone for absorption on silica prior to work-up by dry 

column 'flash' chromatography [4.0 x 50 mm silica; CH2C12 - 

light petroleum (b.p. 40-60 "C)]; this technique provided 

3-cyano-2-(trifluoromethyl)imidazo[l,2-a]pyridine (4 ;nc) 

[0.79 g (after a final recrystallization from petroleum ether, 

b.p. 80-100 'C), 3.7 mmol, 37% based on !J-cyanomethylpyridinium 

chloride] (Found: C, 51.4; H, 1.6; N, 20.2. C9H4F3N3 requires 
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C, 51.2; H, 1.9; N, 19.9%), m.p. 101-102 'C, hmax (mull) 2214 

(CrN str.) cm-', fiF (20% soln. in ClXl3) 15.4 (s) p.p.m., fjH 

(same 

8.48 ( 

E. 1 

116.5 

125.8 

soln.) 7.35 (td; 6-H), 7.69 (ddd; 7-H), 7.91 (dt; 8-H), 

dt; 5-H) p.p.m. (g7, 9.2, +6w&7%77, all other couplings 

Hz), bc (30% soln. in CDC13) 94.6 (s; C-3), 108.2 (s; CN), 

(s; c-6 or -8), 118.9 (s; C-8 or -6), 119.7 (q; CF3), 

(s; c-7), 130.1 (s; C-5), 142.0 (q; C-2), 146.0 (s; C-82) 

p.p.m. ('GF 270.6, 2GF 39.0 Hz), III/~ 211 @I+', lOO%), 192 

(E-F, 22%), 78 (C5H4N+, 13%). 

(b) With pentafluoropyridine 

Triethylamine (1.0 g, IO mmol) and then pentafluoropyridine 

(1.69 g, IO mmol) were condensed, in vacua, into a cold (-196 'C) 

Pyrex tube (300 cm3) containing a magnetic stirrer follower and 

a frozen, de-gassed suspension of N-cyanomethylpyridinium 

chloride (1.55 g, IO mmol) in dry acetonitrile (35 cm3). The 

tube was sealed (PTFE-glass Rotaflo valve) and allowed to warm 

to room temperature; as it did so, the reaction mixture turned 

yellow, then orange, and finally bright red. After the 

reaction mixture [now containing a white precipitate) had been 

stirred for 2 days, the tube was opened and the product was 

filtered to remove triethylammonium chloride (0.23 g, 1.7 mmol; 

identified by i.r. spectroscopy and m.p. determination). 

Addition of water to the filtrate caused the precipitation of 

orange pyridinium cyano(2,3,5,6-tetrafluoro-4-pyridyl)methylide 

(5; nc) (2.01 g, 7.5 mmol, 75%) (Found: C, 53.9; H, 1.6; 

F, 28.6; N, 15.6. C12H5F4N3 requires C, 53.9; H, 1.9; F, 28.5; 

N, 15.70/o), m.p. 171-172 'C (decomp.), Amax (mull) 2153 (CsN . 

str.) cm 
-1 , bF [IO% soln. in (CD3)2CO] -20.7 (m; 2-,6-F), -71.4 
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(m; 3-,5-F) p.P.m. p hH (same soln.) 8.03 (t; 3-,5-H), 8.28 

(t; 4-H), 8.87 (d; 2-,6-H) p.p.m., m/g 267 @.I+', 100%)~ 248 

(M-F, IZ%), 79 (c~H~N" 6%). 
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